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ABSTRACT 

The oxidation of platinum a t  high temperatures (above 800' C) i s  controlled 

The r a t e  of oxida- by boundary-layer diffusion, except a t  t h e  lowest pressures. 

t i o n  i s  determined by t h e  r a t e  of diffusion of oxide through the  boundary l aye r  

away from t h e  platinum. 

molybdenum oxidation, where the  r a t e  i s  controlled la rge ly  by t h e  diffusion of 

This i s  i n  contrast  t o  t h e  s i t ua t ion  i n  tungsten and 

oxygen through the  boundary l aye r  towards t h e  metal. 

anism i s  a consequence of t h e  much lower r a t e  of oxidation of platinum. 

dence i s  presented t h a t  supports t h i s  mechanism f o r  t h e  oxidation of platinum. 

The difference i n  mech- 

Evi- 

INTRODUCTION 

Some years ago we reported' a study of t he  oxidation of platinum i n  ordi-  

nary oxygen i n  the  temperature region above 800' C, where the  oxide i s  vo la t i l e .  

All t h e  data avai lable  up t o  t h a t  time had been obtained with platinum crucibles  

o r  p l a t e s  heated i n  tube furnaces. The r e s u l t s  were widely var iant  and highly 

dependent on the  flow rate of gas through t h e  furnacej the  f a s t e r  t he  gas flow 

rate, t h e  higher t he  measured oxidation rate .  

t h a t  reac t ion  equilibrium was being approached i n  the  furnace and t h a t  t he  r a t e  

was  d i f fus ion  l i m i t e d .  

heated ribbons placed i n  a cooled bulb. 

These r e s u l t s  indicated t o  q,s2 

To minimize these e f fec ts ,  we employed' e l e c t r i c a l l y  

* Invi ted paper presented i n  Symposium on "Gas-Solid Reactions a t  High Ve- 

l o c i t y  Flow Conditions" sponsored by the  Corrosion Resistant Metals Committee, 

AIME Annual Meeting, Chicago, February 1965. 
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We were primarily in te res ted  i n  the low-pressure region, but  some experi- 

ments were performed a t  pressures up t o  1 atmosphere. 

pressure dependency which was explained. on t h e  b a s i s  t h a t  t he  r a t e  of oxidation 

was proportional t o  the  pressure a t  a l l  pressures, but t h a t  with increasing 

pressure an increasing f r ac t ion  of t h e  vo la t i l i z ing  oxide was back-reflected t o  

t h e  ribbon by t h e  surrounding gas molecules. 

a t  the  temperature of t h e  platinum and are  decomposed on impact, t h e  platinum 

being redeposited on the  specimen. Because of t h e  l imi t a t ions  of space, t h i s  

explanation was offered summarily without detai led support. Recently, J a f f ee  

and  associate^^,^ have suggested t h a t  the pressure dependency of our data up 

t o  0.5 t o r r  could be explained on t h e  bas i s  of a Langmuir-type adsorption of 

molecular oxygen followed by dissociation. Since t h e  correct  explanation of 

t h e  e f f e c t  of pressure on the  oxidation r a t e  i s  a necessary requirement t o  t h e  

development of t h e  basic  mechanism of t he  oxidation reaction, we f e l t  t h a t  the 

back-ref lect ion theory should be presented i n  more de t a i l .  This i s  the  object 

of t h e  present paper. 

We found a pecul iar  

The oxide molecules a re  not s t a b l e  

RESULTS AJJD DISCUSSION 

A t yp ica l  s e t  of r e s u l t s  showing the  pressure dependency of t h e  oxidation 

reac t ion  i s  presented i n  Fig. 1, where w e  have plotted,  on logarithmic scales,  

t h e  rate of oxidation, R, versus the  pressure, p. For comparison some results 

of K r i e r  and Jaffee4 and of Raub and Pla te5  a re  a l s o  shown. 

taken a t  atmospheric pressure using furnaces. 

rium within the  furnace i s  apparent from t h e  much smaller values tha t  these ob- 

se rvers  obtained: 

pared t o  our value of 300 pg cm'2 hr-', d i f f e ren t  by a f ac to r  of about 100; and 

K r i e r  and Jaffee i n  a i r  f ' s a d  s rate cf 0-38 pg cm" hr-l  compared t o ,  our 

66 pg cmm2 hr-', a f ac to r  of about 175. 

These data were 

The e f f e c t  of react ion equilib- 

Raub and Pla te  i n  O2 found a r a t e  of 3.1 pg cm" hr - l  com- 
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Examining t h e  pressure dependency o f  our data, one sees that a t  the lowest 

pressures the rate increases d i r ec t ly  with the pressure, as evidenced by the  

s t r a igh t  l i n e  w i t h  a slope of 1. 

pressure ind ica tes  t h a t  t he  r a t e  of oxidation i n  t h i s  low pressure region i s  

determined by t h e  r a t e  of co l l i s ion  of the O2 molecules with the  platinum 

surface. A t  higher pressures, the r a t e  fa l l s  below the  s t r a igh t - l i ne  r e l a t ion  

and continues t o  f a l l  off  more and more as t h e  pressure increases.  

t he  curve has the  form of a Langmuir adsorption isotherm. However, t h e  pressure 

a t  which the  fa l l -of f  from the  s t ra ight - l ine  r e l a t ion  occurs i s  dependent on the  

w i d t h  of t he  ribbon: the wider the  ribbon, t h e  lower the  fa l l -of f  pressure. I n  

addition, f o r  pressures above the  f a l l -o f f  pressure, t h e  r a t e  of oxidation also 

var ies  with ribbon width: t he  wider the ribbon, t h e  smaller t h e  rate .  

This dependency on the f i rs t  power of t he  

I n  general, 

These observations of t h e  a f f e c t  of filament width on the r a t e  of oxida- 

t i o n  cannot possibly be explained by an adsorption mechanism. 

f a c t s  can be explained by the  back-reflection theory. 

mean-free-path of the vo la t i l i z ing  oxide molecules i n  the  surrounding gas i s  

l a rge  compared t o  t h e  width of the  ribbon, and a l l  the oxide escapes and i s  con- 

densed on the cooled bulb. The width of t h e  ribbon has no influence on t h e  r a t e  

of oxidation. The oxidation i s  reaction-rate controlled, and depends on t h e  

first power of t he  pressure. 

creases and the  oxide molecules suffer co l l i s ions  a t  dis tances  c loser  and c loser  

t o  t h e  ribbon. The chance of being back-reflected t o  the ribbon increases, and 

any oxide molecule that i s  back-reflected i s  decomposed on t h e  hot ribbon; t he  

platinum i s  redeposited on t h e  p la t inum surface. The oxidation i s  diffusion 

l imi t ed .  

However, a l l  the  

A t  low pressures the 

As t h e  pressure increases, t he  mean-free-path de- 

The pressure a t  which the  oxidation starts t o  deviate from reaction- 

cont ro l  siiouili dekeiid i n  s ~ z e  z z n ~ e r  nli- t . h ~  r e l a t ive  values of t h e  mean-free-path 
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of the  oxide molecule and the  width ( o r  diameter) of t he  filament: the l a rge r  

t h e  filament, t h e  lower t h e  fa l l -of f  pressure should be. Furthermore, f o r  any 

given pressure, t h e  wider  the filament, t h e  lower the r a t e  of oxidation. 

The phenomenon i s  very similar t o  that  occurring when a metal evaporates 

i n  an i n e r t  gas. 

vestigated the  e f f ec t  of pressure of N2-A mixtures on t h e  r a t e  of evaporation 

of tungsten wires. 

This problem w a s  studied some years  ago by Fonda' who in- 

Similar t o  us, Fonda found t h a t  the  diameter of t h e  fi lament 

had a noteowrthy ef fec t  on the  r a t e  of evaporation: 

t h e  smaller the rate of evaporation. 

t he  l a rge r  the diameter, 

It i s  possible t o  compare the  diffusion phenomenon occurring i n  the  oxida- 

t i o n  of platinum with that  occurring i n  t h e  evaporation of tungsten by consider- 

ing a quant i ty  ca l led  t h e  escape probabili ty,  Pe. 

defined as t h e  chance tha t  any chemical p a r t i c l e  evaporating from the surface 

of t h e  filament w i l l  escape from the  filament. 

The escape probabi l i ty  i s  

It may a l so  be considered as 

t h e  f r a c t i o n  of p a r t i c l e s  evaporating that  escapes. For our data the  escape 

probabi l i ty  a t  any pressure i s  t h e  r a t i o  of t h e  measured r a t e  of oxidation t o  

the  true rate obtained by extrapolating from t h e  s t r a igh t l ine  region t o  t h e  

given pressure. For a tungsten atom evaporating i n  an i n e r t  gas t h e  escape 

probabi l i ty  a t  any pressure can 'be calculated frm Fonda's data; it i s  the  r a t i o  

of t h e  rate of evaporation at  t h e  given pressure t o  t h e  r a t e  of evaporation i n  

vacuum. 

The comparison of t he  data i s  shown i n  Fig. 2(a) where we have plotted,  f o r  

our ribbon6 and-.lepr Fonda's'wire, We escape probabi l i ty  versus the  log of t he  

pressure.  While Fonda reports  data  only  f o r  t h e  higher pressures, h is  r e s u l t s  

appear similar t o  ours. For our oxidation data  the  escape probabi l i ty  i s  one 
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However, t h i s  type of p lo t  points  out very nicely the e f f ec t  of ribbon w i d t h  on 

the  r a t e  of oxidation i n  t h e  higher pressure regions. 

starts fal l ing-off  from one a t  some pressure which i s  a function a f t h e  wid th  of 

t h e  ribbon. 

f o r  t he  different  width ribbons. 

d i f fe ren t  ribbons ind ica tes  that the  fa l l -of f  occurs a t  the  pressure where t h e  

mean-free-path of the  oxygen, L, equals t he  w i d t h  of the  ribbon. This f a c t  i s  

shown i n  Table I by the  data f o r  ribbons w i t h  th ree  d i f f e ren t  widths. 

equal i ty  of the ribbon width  and 

of t he  r a t i o  of t he  w i d t h  t o  

es tab l i shes  a d i r ec t  re la t ionship  between the  two. 

For pressures above the  f a l l -o f f  pressure, Pe 

The escape probabi l i ty  

This effect  i s  shown by the d i f f e ren t  in te rcepts  on t h e  abscissa  

Ekamination of the  f a l l -o f f  pressure of the  

The 

L i s  probably for tui tous,  but t he  constancy 

L f o r  t h e  d i f fe ren t  wid th  ribbons de f in i t e ly  

decreases rapidly through a 

region i n  which it i s  inversely proportional t o  the  l o g  of t he  pressure. 

one remembers that  the r a t e  of o x i h t i o n  a t  any given pressure i s  d i r e c t l y  

proportional t o  

ribbons have much smaller r a t e s  of oxidation. 

decreases less rapidly, reaching rather  small values a t  atmospheric pressure. 

If 

Pe, one sees what a marked e f f ec t  ribbon width has; t he  wider 

A t  s t i l l  higher pressures, Pe 

To show b e t t e r  t h e  behavior i n  t h e  high pressure region, one can p lo t  the  

log  P, versus log  9 as done i n  Fig. 2(b). Here t h e  s imi l a r i t y  of Fonda's 

results and ours i s  qui te  evident. 

pressure a t  which 

viscous flow, above 100 to r r ,  t h e  data f o r  the d i f f e ren t  w i d t h  ribbons and f o r  

Fonda's wire l i e  on p a r a l l e l  s t r a igh t  l ines .  The value of t he  slope ind ica tes  

t h a t  f o r  both phenomena Pe i s  proportional t o  p-3/4. 

sure region there  i s  s t i l l  a marked ef fec t  of filament diameter on t h e  rate of 

oxidat ion a t  any given pressure. 

We have extended Fonda's data back t o  t h e  

I n  the  region of L i s  equal t o  the  diameter of his wire. 

Even i n  t h i s  high pres- 
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The e f f ec t  of filament diameter can be i l l u s t r a t e d  most c l ea r ly  from a 

cross-plot of these data, as shown i n  Fig. 3, where w e  have p lo t ted  

various pressures against  t h e  width or diameter of t h e  filament. 

t h a t  t h e  rate of oxidation f a l l s  very rapidly a t  f i rs t  with increasing diameter 

and then decreases more and more slowly. This i s  especial ly  t r u e  a t  the  higher 

pressures. A t  750 t o r r  Pe appears t o  be level ing off at  a m i n i m u m  value, as 

one might expect, probably about 0.0015. This means t h a t  f o r  any reasonably 

sized platinum specimen, 99.85 percent of t he  platinum oxidized i s  re f lec ted  

back t o  t h e  specimen, and explains i n  par t  t he  s t a b i l i t y  of platinum ware a t  

high temperatures under atmospheric air. 

Pe fo r  

One can see 

It i s  possible  t o  develop th i s  theory along more quant i ta t ive  l i n e s  i n  t h e  

region of viscous flow. Fonda explained h i s  results on t h e  bas i s  of Langmuir's 

th in- f i lm theory of heat conduction7, and our r e s u l t s  y ie ld  equally w e l l  t o  t h e  

same treatment. I n  short ,  one assumes t h a t  the  filament i s  surrounded by a 

s ta t ionary,  cy l indr ica l  f i l m  of gas through which t h e  heat  i s  car r ied  purely by 

conduction. 

can be calculated from t h e  heat l o s s  o f  t h e  filament. 

t o  t h e i r  s m a l l  part ial  pressure, do not contribute s ign i f i can t ly  t o  the  heat  

loss. The filament i s  assumed t o  be oxidizing a t  a r a t e  proportional t o  t h e  

p a r t i a l  pressure of oxygen. 

t h e  s t a t iona ry  film of gas. 

film, it i s  carr ied away i n  the convection current and escapes from the  filament. 

The o ther  molecules a re  back-reflected t o  the  filament and the  platinum redeposited. 

For s implici ty  we w i l l  s e t  up the d i f fus ion  problem i n  cy l indr ica l  coordinates 

The thickness of t h e  f i l m  i s  determined by t h e  heat t r ans fe r  and 

The oxide molecules, due 

The vo la t i l e  oxide molecules must diffuse through 

Once a molecule reaches the outer  boundary of t h e  

even though we have used ribbons rather  then wires. This i s  reasonable because 

t h e  diameter of t h e  i'iiiii f o r  z z n ~ e c t i v ~  conditions i s  la rge  compared t o  the  width 
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of t h e  ribbons.' Let us consider un i t  length of filament oxidizing a t  a given 

temperature. Then the  grams of oxide pe r  un i t  t i m e ,  M, d i f fusing through every 

imaginary cylinder of radius r concentric with the ax i s  of the filament i s  

given by 

dN 
M = -2nrD dr 

where N i s  t h e  concentration of oxide i n  t h e  gas phase i n  gms/cc, and D i s  

t h e  diffusion coef f ic ien t  f o r  PtOZ molecules i n  stagnant oxygen. 

If we assume the  diffusion coeff ic ient  i s  constant o r  may be represented 

by an average value, we may in tegra te  the  expression across the  boundaries of 

the film and obtain 

b 
M I n  a = 2nDNa ( 2) 

where a i s  t h e  diameter of t he  filament, b i s  t h e  diameter of t he  f i l m ,  and 

Na 

t i o n  a t  t h e  outer boundary of t h e  film was taken as zero. 

i s  t h e  concentration of oxide a t  the surface of t h e  wire. The concentra- 

Equation (2) can be transformed by making use of t h ree  relat ions.  

from t h e  k i n e t i c  theory of gases, D 

surrounding gas. Second, our measured r a t e  of oxidation, R, i s  i n  terms of 

grams of oxide per  un i t  time pe r  un i t  area of wire surface, so  

Third, N a  

Rexhrap. Making these subs t i tu t ions  in to  Eq. (2) and remembering t h a t  

'e = R/Rextrap 

F i r s t  

var ies  inversely with the  pressure of t he  

R = M/2xa. 

i s  d i r e c t l y  proportional t o  t h e  t r u e  r a t e  of formation of oxide, 

f o r  any given temperature, we obtain t h e  expression 

b 
Pepa I n  = constant ( 3 )  

This expression contains four  variables. We know a and p from the experi- 

mental conditions. We can ca lcu la te  Pe from t h e  measured oxidation rates ,  
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manner described by Langmuir7. 

t he  above expression f o r  our r e s u l t s  i n  the  pressure region above 100 t o r r .  The 

values of t h e  d i f fe ren t  var iables  and of t he  constant a re  presented i n  Table 11. 

It should be pointed out t h a t  even the  temperature of t h e  platinum was changed 

i n  these resu l t s .  Actually, we f ind  tha t  Pe changes l i t t l e  with t h e  platinum 

temperature. 

can be calculated from the  experimentally determined heat l o s s  i n  the  

We have calculated the  value of the constant i n  

The constancy of t he  expression over the  wide range of var iables  i s  su f f i -  

c ien t  t o  allow credence being given t o  the  theory and t o  t h e  assumptions on 

which it w a s  based. 

above 800° C, t h e  t r u e  r a t e  of oxidation i s  proportional t o  t h e  f i rs t  power of 

t h e  oxygen pressure a t  all pressures, but t h a t  above a ce r t a in  pressure the  r a t e  

i s  l i m i t e d  by diffusion of t h e  oxide out through a boundary layer.  

t i o n  l i m i t e d  by oxide diffusion i s  i n  contrast  t o  t he  s i t ua t ion  encountered with 

tungsten and molybdenum where the  r a t e  of oxidation i s  l imited by diffusion of 

oxygen toward the  metal. The difference a r i s e s  from the  f a c t  t h a t  tungsten and 

molybdenum oxidize from lo3 t o  lo4 times more rapidly than platinum. 

Therefore, we may conclude t h a t  i n  t h e  oxidation of platinum 

The oxida- 

It should be emphasized t h a t  t he  values f o r  t he  escape probabi l i ty  pre- 

sented above a re  cha rac t e r i s t i c  of conditions of convective flow. Under condi- 

t i ons  of higher flow or more turbulent flow, conditions encountered i n  high speed 

f l i g h t ,  t he  escape probabi l i ty  and hence the  r a t e  of oxidation of platinum could 

increase by one or  two orders of magnitude. 
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Ribbon Fall-off 
width, pressure,  

cm t o r r  

lo 

L a t  f a l l -o f f  Rat io  of ribbon 
pressure", width t o  L 

an a t  f a l l - o f f  
pres  sure  

TABLE I. - COMPARISON OF RIBBON WIDTH WITH MEAN- 

FREE-PATH OF OXYGEN, L, AT FaL-OFF PRESSURE 

0.0287 

.119 

.22 

0.19 0.0284 1.01 

.046 .117 1.02 

.023 .235 .94 
C. 

"Values of L calculated from values given i n  
ref. 8. 
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TABI;E 11. - CORRFLATION OF ESCAPE PROBABILITIES WITH THIN-FILM 

DIFFUSION TKEORY 

Filament 
width, 

a, 
cm 

0.0287 I 

I 

.0287 

1 
1 
.119 

.22 

Temper- 
ature,  

OC 

Pressure 
if oxygen, 

P, 
t o r r  

1060 

1200 

1100 

1100 

750 

750 

730 

157 

100 

7 40 

445 

15 7 

7 45 

407 

136 

75 0 

750 

750 

153 

153 

Film 
I iame t er  , 

b, 
cm 

0.55 

.55 

.55 

1.7 

2.15 

.55 

. a1 
1. 70 

. a5 
1.25 

2. 71 

1. 05 

1.05 

1. 05 

2.9 

2.9 

Escape 
probabi l i ty ,  

pe 

0.0061 

,0059 

.0061 

.022 

.024 

.0060 

.0094 

.020 

.0322 

.0036 

.0068 

.0018 

.0017 

.0019 

,0055 

.0058 

16. 8 

16. 3 

16. 3 

17.5 

12. 8 

16.3 

17. 4 

16. 2 

16. 6 

17. 7 

15. 0 

20. 2 

19.0 

21.2 

20.5 

21.5 



DIMENSIONS OF RIBBON 12 
I = 15.6 CM 
w = 0.0287 C M  

t = O.oO14 C M  

0 OUR DATA IN 02 

0 
0 
0 

~ M 
I 

A 

Fig. 1. - Rate of oxidation of platinum ribbon number 2 at 1060" C under various 
pressures of gas. 
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0 
0 
0 
m 
I w 

v, 
W 

S P E C I M E N  T E M P . ,  F ILAMENT 
N O .  o c  W I D T H ,  

C M  

o r  
a 2  1060 0 . 0 2 8 7  
0 4 1050 . 0 2 8 7  
V 6  1050 . 0 2 8 7  
0 9  1200  . 0 2 8 7  
0 13 1100 . 1 1 9  
D 23 1100 . 2 2  
a 24 1100  . 2 2  
D FONDA 2600 , 0 0 9 7 8  

I I 1 l 1 1 1 1 1  I I I I 1 1 1 1 1  I I I l l l l l 1  1 1 l l l l l l l  I I i I i l i J  
.01 .1 1 10 100 1000 

. 0 0 1  

P R E S S U R E ,  TORR cs -35020 
Fig. 2. - Variation of escape probability with pressure of surrounding gas. 
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0 0 1 1  I I I I I I 
0 . 0 4  .08 . 12  . 16  . 2 0  . 2 4  

FILAMENT W I D T H ,  CM CS-35018 

Fig. 3. - Variation of escape probability with filament diameter at 
several pressures. 
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